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Course organization 

• Theory:  
– 2 ECTS 

– 4 questions on theory during written examination → 60% of the final note 

– Slides available on http://metronu.ulb.ac.be/pauly_cours.html 

 

• Laboratories:  
– 4 ECTS  

– Organization:  M. Ciccarelli (Maureen.Ciccarelli@ulb.be) 

– 25% of final note → Laboratory reports  

– 1 question during written examination → 15% of final note  
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Reminders 

 

• Relativity 

 

• Statistics 

 

• Radioactive filiation 
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Fundamental postulates of relativity 

1. Principle of relativity or principle of Galilean invariance (Poincarré, 
1905): The laws of physics are identical, i.e. have identical 
mathematical expression, in all inertial frames of reference or 
Galilean reference frames (frames of reference that describe time 
and space homogeneously, isotropically, and in a time-independent 
manner; all inertial frames are in a state of constant, rectilinear 
motion with respect to one another) 

2. Universality of light velocity (Einstein, 1905): The light velocity in 
vacuum is constant, isotropic and has same measurement  in all 
inertial frames of reference in relative motion. This velocity does not 
depend on the motion of the source (light velocity: c = 299 792 458 
ms-1 ≈ 3 108 ms-1)  
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The mass m0 and the charge q of a particle are proper 
characteristics of the particle and are thus invariant for 
a change of inertial frame of reference  



Transformation of Galileo 

Consider point P in 2 inertial frames: S and S’ (P is at rest in S’) 
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The frame S’ moves with velocity v relative 
to the frame S along x axis. According to the 
Galilean transformation (non relativistic), 
we have for any point P: 

x 

y 

z 

x' 

y' 

z' S S’ 

. P 

For a particle of mass m and velocity v: T=m0v2 p=m0v 

Not valid for electromagnetism 

v 



Transformation of Lorentz (1) 
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y' 

z' S S’ 

. P 

For high velocities (near c) 
→ Lorentz transformation 
(the light velocity c is the 
same in both frames) 

v ≈ c 



Transformation of Lorentz (2) 
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Expression of ° as a function of ¯ 
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Interval between 2 events 

• In a 4D-space (3 spatial coordinates + time) → one event = one 
point → point  of universe 

• One moving particle describing a line in this 4D-space → line of 
universe 

• The interval s12 between 2 events 1 and 2 is described by 

 

 

• s12 is the same in all inertial systems of reference → invariant  

• For 2 close events → interval ds → 
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Four-vector space-time 

• A four-vector space-time     is defined as all real components 
ct, x, y, z → the square of its modulus is defined by →  

 

 

• S2 is invariant for all Lorentzian transformations  

• We consider 2 inertial frames S and S’ (with the event E1 as the 
origin of space and time in both frames) → if we consider a 
second event E2 with coordinates x,y,z,t in S and x’,y’,z’,t’ in S’ 
(four-vector space-time) → the quadratic form 

 

 

 is an invariant 
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Four-vector (in general) 

• In a general way→ a four-vector     is all real components x0, x1, 
x2, x3 which follow the same transformation than the space-
time coordinates for a change of inertial frame of references  

• They have as properties: 

– The square of the amplitude X2 = x0
2 - x1

2 - x2
2 - x3

2 of a four-
vector is invariant 

– The linear combination                 of 2 four-vectors is a four-
vector 

– Le scalar product                                                          of 2 four-
vector is invariant 
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Time dilatation 

 Consider 1 material point with velocity v (along x) measured 
in frame S → in time interval dt: it is moving to dx →  

 

 For observer in frame S’ → point is fixed → 

 

 

 

 

 ¢t’= ¢¿0  is the proper time of the material point 
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For observer at rest (in S), the time interval ¢t is always 
larger than the proper time 



Example of time dilatation 

• At Fermilab, pions ¼+ are created with kinetic energy T=200 GeV 
→ they are moving on 300m with a loss < 3%. 

• The loss is due to the disintegration of ¼+ → proper lifetime ¿0 = 
26.0 ns (at rest)  

• If its lifetime would be the same for the lab observer (in S), the 
fraction of surviving pions after d = 300m at a velocity v ≈ 0.99c 
would be 

 

 

• But at 200 GeV → ° = 1433 → tlab = °¿0 ≈ 37 ¹s → 
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Length contraction 

•  An object has a fixed length l0 (proper length) for an observer 
in S’  

• An observer at rest sees the object moving with a velocity v 
(parallel to the object) 

•  The length l is always smaller than l0: 
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The length of the object in motion is always 
smaller than its proper length 



Example of length contraction 

• Cosmic muons  ¹ are produced in the outer part of  atmosphere 
by cosmic radiations (mainly protons) with velocity v ≈ c  

 

• The mean life-time of muon is ¿¹ = 22 ¹s → they have to 
disintegrate after travelling a mean distance d = c¿¹ = 660 m → 
no one could reach Earth surface 

 

• In reality → contraction of the width of terrestrial atmosphere 
→ with ° ≈ 1000 → the width of the atmosphere of ≈ 10 km is 
« seen » by the ¹ as a width of ≈ 10 m 
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Relativistic kinematic 

• A particle with mass at rest m0, in motion with a velocity      in 
an inertial frame at rest  is characterized by: 

     - a momentum  

     - a total energy E = °m0c
2 

     - a kinetic energy: T = E-m0c2=(°-1)m0c
2 

 

• We have the following relations between E, T and p: 

 

 

 

• For a photon → v = c → E = pc 
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Geometric illustration of kinematic relations  
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Four-vector energy-momentum 

• The 4 components (E/c, px, py, pz) also constitute a four-
vector: energy-momentum four-vector 

• The square of its modulus is invariant for a change of inertial 
frame:   

 

 

• In a frame for which the particle is at rest → 

 

 

• We deduce → 
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Four-vector energy-momentum for a set of particles 

• We consider a set of free particles without interaction → each 
particle is characterized by a four-vector space-time and by a 
four-vector energy-momentum 

• The resulting                      is also a four-vector characterized by 
the algebraic sum of the four-vector components of all 
particles 

 

• Property of four-vector → P2 invariance → 

 

 

• Useful relation of collision or disintegration studies 

22 



Example: Particle disintegration (1) 

• Let disintegration be A → B + C with A initially at rest in the 
laboratory frame (which is also the center of mass frame) → 

 

• The four-vector energy-momentum invariance implies → 

 

 

• Moreover → 

 

 

• By subtraction → 

• Dividing by 
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Example: Particle disintegration (2) 

• We thus obtain →  

 

• And finally → 

 

 

 

 

 

• As pB,C
2 ≥ 0 → we deduce mA ≥ mB + mC → mAc2 = mBc2 + mCc2 + 

T with T, the total kinetic energy in the center of mass frame  
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Example: Threshold energy (1) 

• The threshold energy for the production of Q particles during an 
inelastic collision is the minimal kinetic energy of the N incident  
particles that allows to create particles at rest in the center of mass 
frame 

• We consider as instance the minimal kinetic energy of 1 particle with 
mass m1 colliding with 1 particle at rest with mass m2, to form Q 
particles with mass mj  

• In the laboratory frame, S, before collision → 

 

 

• In the center of mass frame, S’, after collision → 
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Example: Threshold energy (2) 

• With 

 

• We know 

 

• By calculation → 

 

 

 

• For the collision between 2 protons (one at rest) → 

 

• With mp = 938 MeV/c2 → Tmin = 6 mc2 → Tmin = 5.63 GeV 
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Remark on the relativistic limit 

• If the velocity of a particle is « close » to velocity of light, 
relativistic calculations have to be used for the particle 

• What means « close » to the light velocity? Difficult… 

• It is usual easier to consider the kinetic energy of the particle T: 

 If T > (1/200)m0c2 (m0: mass at rest of the particle), relativistic 
calculations have to be used (200 is an arbitrary value 
depending on applications and on needed precision) 

 

 examples: for electron → (1/200)mec
2 = 2.56 keV 

              for proton → (1/200)mpc2 = 4690 keV 
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Reminders about statistic 

     Consider a process with a number of successes x resulting 
from a given number of trials n. Each trial is a binary process. 
We suppose the probability of success as p. 

 

     Three statistical models are important in this course: 

      - The Binomial distribution 

      - The Poisson distribution  

      - The Gaussian (or Normal) distribution 
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Binomial distribution 

It is applicable to all constant-p processes. 

 

 

 

Some properties: 
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Poisson distribution 

     It is a simplification of the binomial distribution under the 
conditions that n is large and p is small 

30 



Examples of Poisson distributions 
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Poisson distribution for radioactive processes 

4 conditions: - atoms are identical 

             - they are independent 

                    -  their mean life is long  

                    - their number is large 

→  probability for x disintegrations in a time interval T: 
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With a is the average rate of disintegrations per time unit →    = aT 



Interval distribution for radioactive processes:  
Erlang distribution (1) 

• Probability that there is no event in a time interval [0,t] is e-at 

• Probability that there is exactly one event in dt is adt  

• Combined probability to observe the first disintegration in the 
interval [t, t+dt] is  

 

• f1(t) is the probability density of the random variable t defined 
as the time between two successive disintegrations  

• We have now to determine the probability density fk(t) of the 
time interval t between one arbitrary disintegration and the 
kth following 
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Interval distribution for radioactive processes:  
Erlang distribution (2) 

• Cumulative distribution function Fk(t) (probability to observe k 
disintegrations in a time interval < t or equivalently probability 
to obtain at least k disintegrations in the time interval [0 t]): 

 

 

• Knowing that 
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Examples of Erlang distributions 
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Time intervals distributions for (□) k = 1; (o) k = 2; (∆) k = 3; 
(   ) k = 5; (◊) k = 7 and (+) k = 9 



Gaussian (or Normal) distribution 

      If p is small and the mean value of the distribution is large ( >»20) → 
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Valid for any situation in which we accumulate more than a few 
counting during the course of the measurement 



Comparison Poisson - Gaussian 
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Gaussian (or Normal) distribution (2) 
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Radioactive filiation: Disintegration constant 

• Probability of disintegration per unit time: ¸ = disintegration 
constant 

• ¸dt is the disintegration probability of a nucleus in the time 
interval dt   

• Application of Poisson distribution → survival probability of a 
nucleus at time t (if existing in t = 0 )→ 

 

 

• If N0 is the initial number (at t = 0) of nuclei → the number of 
survival nuclei N(t) at time t is  
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Half-life and activity 

• The half-life T½ is time is time taken for half the radionuclide's 
atoms to decay → 

 

 

 

• Activity A(t) at time t is defined as the mean number of 
disintegrations per time unit → 

 

 

• The activity unit is Becquerel (Bq) → 1 Bq = 1 disintegration per 
second (old unit → Curie (Ci) corresponding to the activity of 1 g 
of 226Ra → 1 Ci = 3.7 £ 1010 Bq) 
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Radioactive filiation (1) 

• We suppose → 

• The number of X1 (« parent ») decreases following an 
exponential equation → 
 

 

 

• The number of X2 (« daughter ») increases due to disintegration 
of X1 and disintegrates with the disintegration constant ¸2 → 

 

 

• The solution is→ 
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Radioactive filiation(2) 

• The number of X3 changes as  

 

 

 

 

 

 

• Practically → measures of activities A1 = ¸1N1 and A2 = ¸2N2 → 
assuming N2(0) = N3(0) = 0 →  
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and 



Equilibria (1)  

• We note that A1(t) is maximum at t = 0 and zero at t = 1 and 
that A2(t) is zero at t = 0 and t = 1 → A2(t) has a maximum for 
dA2(t)/dt = 0 →  

 

 

 

 

• This maximum happens when the activities of parent and 
daughter are equal → A1(tm) = A2(tm) 
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Equilibria (2)  

• At tm → we have  « ideal equilibrium» 

• The ratio of activities of X2 and X1 is → 

 

 

• For t < tm → always A1 > A2 

• For t > tm → always A1 < A2 

• The specific relation between parent and daughter depends on 
the relative values of their disintegration constants→ 3 cases → 
1.  ¸2 < ¸1 

2.  ¸2 > ¸1 

3.  ¸2 À ¸1 
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Non-equilibrium: ¸2 < ¸1 

• X1 isotopes disintegrate faster than filiation products X2 → the 
ratio of activities increases without limit  

45 



Example with ¸2 < ¸1  

• Disintegration of metastable tellurium → 

 

 

• We have thus → ¸1 = 2.31 10-2 h-1 and ¸2 = 3.59 10-3 h-1 
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Transient equilibrium: ¸2 > ¸1 

• The activities ratio increases as a function of time and reaches 
a constant value → for t → 1: 
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• The daughter activity 
decreases at the same rate 
as that of the parent  → this 
equilibrium is called 
transient equilibrium  

 



Secular equilibrium: ¸2 À ¸1 

• The activities ratio increases as a function of the time and 
reaches 1 pour t → 1: 

 

 

 

• The parent and daughter activities become equal → secular 
equilibrium 

• Example → disintegration of radium → 

 

 

• We have → ¸1 = 1.18 10-6 j-1 and ¸2 = 1.81 10-1 j-1 
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